证明
为外侧任意两个正三角形作外接圆,其两圆有2个交点,其中一个交点为中间三角形的顶点,设另外一个交点为 ,并连接 与中间三角形的另外两个顶点,因为 在两圆上,所以
因为中间正三角形的顶点在圆心上,且 、 、 是外正三角形外接圆交点的连线,所以 ⊥ 、 ⊥ 、 ⊥
因为 , ,所以 ,所以 ,其余二角同理。
基本性质
这一定理可以等价描述为:若以任意三角形的各边为底边向形外作底角为30°的等腰三角形,则它们的顶点构成一个正三角形。
本图形具备下列特征:
- 线段 ,且该三线段交于一点,该点到ABC三点距离之和等于 (或 、 )。
- 与 、 与 、 与 互相垂直。
- 之外接圆相交于一点,该点即线段 之交点。
参见
外部链接