在黎曼面 上,它可以简单的定义为 上的点的(整系数)形式和, ,其中 是 上的点。型如 的除子被称为素除子。一般的除子都是素除子的线性组合。 上的全部除子构成一个交换群,记作 。
对于 上的非零亚纯函数 ,我们可以定义 的除子
,
其中 是 在 点零点的阶(非零点的阶为零,极点的阶按负值计)。型如 的除子叫做主除子。主除子构成的子群记作 。除子类群定义作 。对于紧黎曼面,这是一个有限生成的交换群,它是紧黎曼面 的一个重要不变量。
从层论的观点看,除子是一个局部的概念,对于 上任意的除子 ,和 的开集 ,可以定义 在 上的限制 。函子 是 上的层。
给定 上任何一个除子 ,局部上 都可以被写作一个函数对应的主除子。精确地说,一定存在 的一组开覆盖{ }以及每个 上的函数 ,使得 。一般说来,在 和 的交集上, 和 的限制未必相等,但易见在 上,存在一个处处非零的全纯函数 ,使得 。另外, 的选取不是唯一的,因为我们总可以用一个处处非零的全纯函数 来修正它。反过来,任意一组这样的数据 ,都给出了 上的一个除子。
以上论证表明,黎曼面上的任意一个除子 ,都唯一地对应于层 的一个整体截面。这是Cartier对于除子的观点。
从Cartier的观点出发,不难构造除子 所对应的可逆层 :取 的一组开覆盖{ },以及每个 上的函数 ,使得 。取 上的平凡层 ,在交集 上,如前所述 是 上的一个可逆函数,从而它定义了 上平凡层的一个自同构。把这一同构视作粘合映射 ,不难验证这一族粘合映射满足cocycle条件,从而他们给出了 上的一个可逆层。
反过来,对于黎曼面,每个可逆层都来自于一个除子。事实上,若 是可逆层,令 为任意一个亚纯截面的除子,则 。
易见主除子对应的可逆层同构于平凡层。两个除子之和对应的可逆层是原来两个除子对应之可逆层的张量积。若两个除子之差为一主除子,则他们定义的线丛是同构的。
从线丛的观点看,若两个除子之差为一主除子,我们可以把它们视作等价。上面定义的映射 给出了它与 的一个同构。这里 是可逆层的同构类在张量积下构成的交换群。
任意一个除子 ,我们可以定义 的次数 。根据定义,这一定是一个有限和。对于紧黎曼面,主除子的次数总为零。由此可见,除子的次数只依赖于它在Picard群中的像。