完备性
此条目没有列出任何参考或来源。 (2020年7月3日) |
在数学及其相关领域中,一个对象具有完备性(英语:Completeness),即它不需要添加任何其他元素,这个对象也可称为完备的或完全的。更精确地,可以从多个不同的角度来描述这个定义,同时可以引入完备化这个概念。但是在不同的领域中,“完备”也有不同的含义,特别是在某些领域中,“完备化”的过程并不称为“完备化”,另有其他的表述,请参考代数闭域、紧化或哥德尔不完备定理。
- 在泛函分析中,一个拓扑向量空间的子集被称为是完全的,如果的扩张在中是稠密的。如果是可分空间,那么也可以导出中的任何向量都可以被写成中元素的(有限或无限的)线性组合。更特殊地,在希尔伯特空间中(或者略一般地,在线性内积空间(inner product space)中),一组标准正交基就是一个完全而且正交的集合。
- 在图论中,一个图被称为完全的,如果这个图是无向图,并且任何两个顶点之间都恰有一条边连接。
- 在序理论和相关的领域中,如格和畴(域理论)中,全序性(completeness)一般是指对于偏序集存在某个特定的上确界或下确界。值得特别注意的是,这个概念在特定的情况下也应用于完全布尔代数,完全格和完全偏序。并且一个有序域被称为完全的,如果它的任何在这个域中有上界的非空子集,都有一个在这个域中的最小上界;注意这个定义与序理论中的完全有界性(bounded complete)有细小的差别。在同构的意义下,有且仅有一个完全有序域,即实数。
- 在数理逻辑,一个理论被称为完备的,如果对于其语言中的任何一个句子,这个理论包括且仅包括或。一个系统是相容的,如果不存在同时和非的证明。哥德尔不完备定理证明了,包含皮亚诺公理的所有公理系统都是不可能既完备又相容的。下面还有一些逻辑中关于完备性的定义。