等角螺线
等角螺线、对数螺线或生长螺线是在自然界常见的螺线,在极坐标系中,这个曲线可以写为
或
因此叫做“对数”螺线。
定理
历史
等角螺线是由笛卡儿在1638年发现的。雅各布·伯努利后来重新研究之。他发现了等角螺线的许多特性,如等角螺线经过各种适当的变换之后仍是等角螺线。他十分惊叹和欣赏这曲线的特性,故要求死后将之刻在自己的墓碑上,并附词“纵使改变,依然故我”(eadem mutata resurgo)。但雕刻师误将阿基米德螺线(等速螺线)刻了上去。
自然现象
- 鹦鹉螺的贝壳像等角螺线
- 菊的种子排列成等角螺线
- 鹰以等角螺线的方式接近它们的猎物
- 昆虫以等角螺线的方式接近光源
- 蜘蛛网的构造与等角螺线相似
- 旋涡星系的旋臂差不多是等角螺线。银河系的四大旋臂的倾斜度约为 12°。
- 低气压(热带气旋、温带气旋等)的外观像等角螺线
构造等角螺线
- 在复平面上定义一个复数 ,其中 ,那么连结 的曲线就是一条等角螺线。
- 在平面上, 质点围绕原点逐渐离开, 相对于原点的角速度恒定, 且相对于原点的距离以等比例增长, 则其轨迹为等角螺线。这是因为 ,则有 。
参见
引用
- 埃里克·韦斯坦因. Logarithmic Spiral. MathWorld.
- Jim Wilson, Equiangular Spiral (or Logarithmic Spiral) and Its Related Curves (页面存档备份,存于互联网档案馆), University of Georgia (1999)
- Alexander Bogomolny, Spira Mirabilis - Wonderful Spiral (页面存档备份,存于互联网档案馆), at cut-the-knot
外部链接
- Spira mirabilis (页面存档备份,存于互联网档案馆) 等角螺线的历史和数学