在数学中,泰勒级数(英语:Taylor series)用无限项连加式——级数来表示一个函数,这些相加的项由函数在某一点的导数求得。泰勒级数是以于1715年发表了泰勒公式的英国数学家布鲁克·泰勒(Sir Brook Taylor)来命名的。通过函数在自变量零点的导数求得的泰勒级数又叫做麦克劳林级数,以苏格兰数学家科林·麦克劳林的名字命名。
拉格朗日在1797年之前,最先提出带有余项的现在形式的泰勒定理。实际应用中,泰勒级数需要截断,只取有限项,可以用泰勒定理估算这种近似的误差。一个函数的有限项的泰勒级数叫做泰勒多项式。一个函数的泰勒级数是其泰勒多项式的极限(如果存在极限)。即使泰勒级数在每点都收敛,函数与其泰勒级数也可能不相等。在开区间(或复平面上的开区间)上,与自身泰勒级数相等的函数称为解析函数。
定义
在数学上,对于一个在实数或复数 邻域上,以实数作为变量或以复数作为变量的函数,并且是无穷可微的函数 ,它的泰勒级数是以下这种形式的幂级数:
-
这里, 表示 的阶乘,而 表示函数 在点 处的 阶导数。如果 ,也可以把这个级数称为麦克劳林级数。
解析函数
柯西在1823年指出函数
在
无法被解析。
如果泰勒级数对于区间 中的所有 都收敛并且级数的和等于 ,那么我们就称函数 为解析形的函数(analytic)。一个函数当且仅当(简单地说,“只有在且只要在”)能够被表示为幂级数的形式时,才是解析形的函数。通常会用泰勒定理来估计级数的余项,这样就能够确定级数是否收敛于 。上面给出的幂级数展开式中的系数正好是泰勒级数中的系数。
以下三个事实可以说明为什么泰勒级数是十分重要的:
- 可以逐项对幂级数的计算微分和积分,因此求和函数相对比较容易。
- 数学家因此能够在复数平面上研究函数,因为一个解析函数,也可以被定义为在复平面中一个开放的区间内的解析函数(在区间内每一个点上都能被微分的函数)。
- 可用泰勒级数估计,在某一点上函数会计算出什么值。
对于一些无穷的可以被微分函数 ,虽然它们的展开式会收敛,但是并不等于 。例如,分段函数 ,如果 并且 ,则 时所有的导数都为零,所以这个 的泰勒级数为零,且其收敛半径为无穷大,不过函数 仅在 处为零。但是,在以复数作为变量的函数中这个问题并不存在,因为当 沿虚轴趋于零, 并不趋于零。
如果一个函数在某处引发一个奇点,它就无法被展开为泰勒级数,不过如果变量 是负指数幂的话,我们仍然可以将其展开为一个级数。例如,虽然在 的时候, 会引发奇点,但仍然能够把这个函数展开为一个洛朗级数。
最近,专家们发现了一个用泰勒级数来求解微分方程的方法——Parker-Sochacki method[1]。用皮卡迭代便可以推导出这个方法。
常用的函数:麦克劳林级数
下面我们给出了几个重要的麦克劳林级数。当变量 是复数时,这些等式依然成立。
几何级数
-
二项式级数
-
-
- 二项式系数 。
指数函数和自然对数
以 为底数的指数函数的麦克劳林序列是
- (对所有X都成立)
以 为底数的自然对数的麦克劳林序列是
- (对于在区间[-1,1)内所有的X都成立)
- (对于在区间(-1,1]内所有的X都成立)
三角函数
常用的三角函数可以被展开为以下的麦克劳林序列:
-
- 在 展开式中的Bk是伯努利数。在 展开式中的Ek是欧拉数。
双曲函数
-
-
-
-
-
- 展开式中的Bk是伯努利数。
朗伯W函数
-
多元函数的展开
泰勒级数可以推广到有多个变量的函数:
历史
希腊哲学家芝诺在考虑了利用无穷级数求和来得到有限结果的问题,得出不可能的结论 - 芝诺悖论。后来,亚里士多德对芝诺悖论在哲学上进行了反驳,但德谟克利特以及后来的阿基米德进行研究,此部分数学内容才得到解决。 正是用了阿基米德的穷竭法才使得一个无穷级数被逐步的细分,得到了有限的结果。[2]几个世纪之后,中国数学家刘徽也独立提出了类似的方法。[3]
进入14世纪,马德哈瓦最早使用了泰勒级数以及相关的方法[4]。尽管他的数学著作没有流传下来,但后来印度数学家的著作表明他发现了一些特殊的泰勒级数,这些级数包括正弦、余弦、正切、和反正切三角函数等等。之后,喀拉拉学派在他的基础上进行了一系列的延伸与合理逼近,这些工作一直持续到16世纪。
到了17世纪,詹姆斯·格雷果里同样继续着这方面的研究并且发表了若干麦克劳林级数。但是直到1715年,布鲁克·泰勒 [5] 提出了一个通用的方法来构建适用于所有函数的此类列级数。这就是后来被人们所熟知的泰勒级数。
麦克劳林级数是泰勒级数的特例,是爱丁堡大学的科林·麦克劳林教授在18世纪发表的,并以其名字命名。
与牛顿插值公式的渊源
《
自然哲学的数学原理》的第三编“宇宙体系”的引理五的图例。这里在横坐标上有6个点H,I,K,L,M,N,对应着6个值A,B,C,D,E,F,生成一个多项式函数对这6个点上有对应的6个值,计算任意点S对应的值R。牛顿给出了间距为单位值和任意值的两种情况。
牛顿插值公式也叫做牛顿级数,由“牛顿前向差分方程”的项组成,得名于伊萨克·牛顿爵士,最早发表为他在1687年出版的《自然哲学的数学原理》中第三编“宇宙体系”的引理五[6],此前詹姆斯·格雷果里于1670年和牛顿于1676年已经分别独立得出这个成果。一般称其为连续“泰勒展开”的离散对应。
差分
对于x值间隔为非一致步长,牛顿计算均差,对x值间隔为单位步长1或一致但非单位量的情况,计算差分,前向差分的定义为:
-
插值公式
牛顿前向差分插值公式为:
-
这成立于任何多项式函数和大多数但非全部解析函数。
无穷级数
牛顿在1665年得出并在1671年写的《流数法》中发表了 的无穷级数,在1666年得出了 和 的无穷级数,在1669年的《分析学》中发表了 、 、 和 的无穷级数;莱布尼茨在1673年大概也得出了 、 和 的无穷级数。布鲁克·泰勒在1715年著作《Methodus Incrementorum Directa et Inversa (页面存档备份,存于互联网档案馆)》中研讨了有限差分方法,其中论述了他在1712年得出的泰勒定理,这个成果此前詹姆斯·格雷果里在1670年和莱布尼茨在1673年已经得出,而约翰·伯努利在1694年已经在《教师学报》发表。
他对牛顿的均差分的步长取趋于 的极限,得出:
-
参考文献
- ^ James S. Sochacki. The Modified Picard Method for Solving Arbitrary Ordinary and Initial Value Partial Differential Equations. James Madison University. [2008-05-02]. (原始内容存档于2008-05-01) (英语).
- ^ Kline, M. (1990) Mathematical Thought from Ancient to Modern Times. Oxford University Press. pp. 35-37
- ^ 吴文俊 《中国数学史大系》第三卷 367页
- ^ Neither Newton nor Leibniz - The Pre-History of Calculus and Celestial Mechanics in Medieval Kerala. MAT 314. Canisius College. [2006-07-09]. (原始内容存档于2006-08-06).
- ^ Taylor, Brook, Methodus Incrementorum Directa et Inversa [Direct and Reverse Methods of Incrementation] (London, 1715), pages 21-23 (Proposition VII, Theorem 3, Corollary 2). Translated into English in D. J. Struik, A Source Book in Mathematics 1200-1800 (Cambridge, Massachusetts: Harvard University Press, 1969), pages 329-332.
- ^ Newton, Isaac, (1687). Principia, Book III, Lemma V, Case 1
参见