正方形
在平面几何学中,正方形是四边相等且四个角是直角的四边形[1]。正方形是正多边形的一种:正四边形。四个顶点为ABCD的正方形可以记为 ABCD。
正方形 | |
---|---|
一个正四边形 | |
类型 | 正多边形 |
对偶 | 正四边形(本身) |
边 | 4 |
顶点 | 4 |
对角线 | 2 |
施莱夫利符号 | {4} t{2} |
考克斯特图 | |
鲍尔斯缩写 | square |
对称群 | 二面体群 (D4), order 2×4 |
面积 | |
内角(度) | 90° |
内角和 | 360° |
特性 | 凸、圆内接多边形、等边多边形、等角多边形、等边图形 |
性质
面积和周长
正方形的周长是它的边长的4倍。如果边长为a,那么周长 。正方形的面积是其边长的平方。如果边长为a,那么面积 。如果我们知道正方形的对角线长d,那么我们也可以之计算面积 ,如果正方形边心距为r,外接圆半径是R,那么 。, 。
若正方形的边长为整数,其面积就是一个完全平方数。在周长固定时,正方形的面积一定大于其他非正方形的四边形的面积。
对称性
正方形是一种高度对称的平面图形,它关于两条对角线的交点中心对称(这个点又被称作正方形的中心)。它的对称轴有四条,分别是对边中点的连线以及两条对角线。保持正方形不变的变换有8种,包括全等变换,以正方形中心为中心、角度为90度、180度和270度的旋转,以及关于四条对称轴的反射。这八个变换组成了一个群,是二面体群中的一个,记作D4。
全等变换,四个顶点都不变 |
r1(顺时针90°旋转) |
r2(180°旋转) |
r3(顺时针270°旋转) |
fv垂直反射 |
fh水平反射 |
fd沿主对角线(左上至右下)反射 |
fc沿副对角线(右上至左下)反射 |
二面体群D4 |
正方形与无理数
公元前五世纪时,毕达哥拉斯学派最早证明了正方形的对角线长度与边长长度的比例: ,是无法表示为两个自然数的公比的。
平面镶嵌
用同一种多边形不重叠地将平面“铺满”,称为平面的正镶嵌图。正方形是能够组成平面的正镶嵌图的三种正多边形之一(另外两种分别是正三角形和正六边形)。
参考文献
- ^ Euclid's Elements, Book I. mathcs.clarku.edu. [2017-10-21]. (原始内容存档于2017-09-18).