无限群此条目没有列出任何参考或来源。 (2022年1月9日)维基百科所有的内容都应该可供查证。请协助补充可靠来源以改善这篇条目。无法查证的内容可能会因为异议提出而移除。在数学的群论中,无限群 是指潜在集合中含有无穷多个元素的群。如果潜在集合中有有限数量的元素,那么它就是一个有限群。 群论 群 基本概念 子群 · 正规子群 · 商群 · 群同态 · 像 · (半)直积 · 直和单群 · 有限群 · 无限群 · 拓扑群 · 群概形 · 循环群 · 幂零群 · 可解群 · 圈积 离散群 有限单群分类 循环群 Zn 交错群 An 李型群散在群马蒂厄群 M11..12,M22..24康威群 Co1..3 扬科群 J1..4 费歇尔群 F22..24子怪兽群 B怪兽群 M其他有限群对称群, Sn二面体群, Dn无限群整数, Z模群, PSL(2,Z) 和 SL(2,Z) 连续群 李群一般线性群 GL(n)特殊线性群 SL(n)正交群 O(n)特殊正交群 SO(n)酉群 U(n)特殊酉群 SU(n)辛群 Sp(n)G2 F4 E6 E7 E8劳仑兹群庞加莱群 无限维群 共形群微分同胚群 环路群 量子群 O(∞) SU(∞) Sp(∞) 代数群 椭圆曲线线性代数群(英语:Linear algebraic group)阿贝尔簇(英语:Abelian variety) 查论编 例子 (R, +) 无限李群 无限一般线性群 Just-infinite群