庞加莱群

物理学数学上,庞加莱群(英语:Poincaré group)是狭义相对论闵可夫斯基时空等距同构,由赫尔曼·闵可夫斯基引进[1][2],庞加莱群是以法国数学家亨利·庞加莱命名[3]。它是一种有10个生成元的非阿贝尔群,在物理学上有着基础级别的重要性。

群论
Cyclic group.svg

基本解释

等距同构是一种事物在事件间的时空轨迹上的移动方式,而这样做是不会影响固有时的。例如,所有事件被延后了两小时,而这两小时中包括了两项事件,以及你从事件一到事件二的路径,那么你的计时器所量度出的,两事件间的时间间距会是一样的。又例如,所有事物被移到西边五公里外的地方,那么你所量度出的时间间距也不会改变。而这种移动的结果是不会影响棍子长度的。

如果我们无视重力效应的话,那么一共有十种移动方式:在时间上的平移,在三维空间中任一维上的平移,在三条空间轴上任一条的(定角)旋转,或三维任一方向上的直线性洛伦兹变换,因此是1 + 3 + 3 + 3 = 10。

如果将这种等距同构结合起来(即执行一个之后再执行另一个),那么所得的结果也会是等距同构(然而,这一般来说只限于上述十种基本移动之间的线性组合)。这些等距同构因此形成了一个。也就是说,它们当中存在单位元(即不移动,停留在原先的地方)及逆元(将事物移动回原先的位置),同时亦遵守结合律。这种特定群的名字叫做“庞加莱群”。

经典物理学中,对应庞加莱群的群叫伽利略群,也是有十个生成元的,伽利略群作用于绝对时空。而在伽利略群中取代直线性洛伦兹变换的是,联系两个共动惯性参考系错切变换。

专门解释

庞加莱群是闵可夫斯基时空等距同构。它是一种十维的非紧李群平移阿贝尔群是一个正规子群,而洛伦兹群也是一个子群,原点的稳定子群。庞加莱群本身是仿射群英语Affine group的最小子群,而仿射群就包括了所有的变换与洛伦兹变换。准确一点来说,庞加莱群是平移群与洛伦兹群的半直积

 

另一种解释方式是,把庞加莱群视为洛伦兹群群扩张,而扩张的部分则是它的向量群表示;因此庞加莱群有一个不正式的称呼,叫“非均匀洛伦兹群”(inhomogeneous Lorentz group)。另外,当德西特半径趋向无限大时,德西特群(de Sitter group) 群收缩英语Group contraction就是庞加莱群。

它的正能量幺正不可约表示是由质量(非负数)与自旋整数或半整数)所标记的,并与量子力学的粒子有关。

爱尔兰根纲领一致,闵可夫斯基空间的几何由庞加莱群所规定的:闵可夫斯基空间可被视为庞加莱群的齐性空间

庞加莱代数是庞加莱群的李代数。更具体的来说,正式的( ),也就是洛伦兹子群(它的单位连通区英语Identity component 的正确时间( )部分,是与单位元有关系的,因此可用矩阵指数  表示。在分量形式中,庞加莱群可用以下的交换关系表示[4][5]

 

 
 

其中P为平移生成元,M为洛伦兹变换生成元,η为闵可夫斯基度规。

以下的是与(均匀)洛伦兹群的交换关系,洛伦兹群由旋转( )及直线性洛伦兹变换( )所组成。在这样的标记下,可以用非协变形式(但较实用)来表示整个庞加莱代数

 
 
 
 
 
 
 

其中最下面的是两个直线性洛伦兹变换的交换关系,很多时候会被称作“维格纳旋转”。注意根据上述关系, ,这是一项重要的简化,能使洛伦兹子代数约化至su(2)su(2),并且使应付洛伦兹群的表示论的方法有效得多。

这种代数的卡西米尔不变量  ,其中 泡利-鲁班斯基假向量英语Pauli-Lubanski pseudovector;它们的作用是标记群表示。

庞加莱群是任何相对论性量子场的完全对称群。因此,所有基本粒子都能成为这个群表示的一部分。这些表示一般是由两种对象所指明的:每一粒子的四维动量平方(即质量平方),和内禀量子数 ,其中J自旋量子数,P宇称C电荷共轭量子数。实际上许多量子场会破坏宇称与电荷共轭。在那些情况下就会弃用被破坏的PC。由于每一套量子场论均需拥有CPT不变性,因此要从PC构建时间反转量子数T是件很容易的事。

作为拓扑空间,这个群共有四个连通区:单位区、时间反转区、空间颠倒区、以及同时出现时间反转与空间颠倒的区。

庞加莱对称

庞加莱对称狭义相对论的完全对称,当中包括:

  • 在时间与空间中的平移(即位移),P。它们形成了描述时空中的平移的阿贝尔李群
  • 空间中的旋转(它们形成了描述三维旋转的非阿贝尔李群,其生成元为J
  • 直线性洛伦兹变换,即联系两个均匀移动物体的变换,其生成元为K

上述最后两种对称,JK,组合起来就成了洛伦兹群(见洛伦兹不变性)。

它们都是一种叫庞加莱群李群的生成元,而庞加莱群是平移群与洛伦兹群的半直积。在这个群下不变的对象,可被称为拥有庞加莱不变性相对论性不变性

参考资料

  1. ^ Minkowski, Hermann, Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1907/8: 53–111 
  2. ^ Minkowski, Hermann, Raum und Zeit, Physikalische Zeitschrift, 1908/9, 10: 75–88 
  3. ^ *Poincaré, Henri, Sur la dynamique de l’électron, Rendiconti del Circolo matematico di Palermo, 1905/6, 21: 129–176 
  4. ^ N.N. Bogolubov. General Principles of Quantum Field Theory 2nd. Springer. 1989: 272 [2014-08-05]. ISBN 0-7923-0540-X. (原始内容存档于2013-10-21). 
  5. ^ T. Ohlsson. Relativistic Quantum Physics: From Advanced Quantum Mechanics to Introductory Quantum Field Theory. Cambridge University Press. 2011: 10 [2014-08-05]. ISBN 1-13950-4320. (原始内容存档于2013-10-21). 

参考文献

  • Wu-Ki Tung. Group Theory in Physics. World Scientific Publishing. 1985. ISBN 9971-966-57-3. 
  • Weinberg, Steven. The Quantum Theory of Fields 1. Cambridge: Cambridge University press. 1995. ISBN 978-0-521-55001-7. 
  • L.H. Ryder. Quantum Field Theory 2nd. Cambridge University Press. 1996: 62 [2014-08-05]. ISBN 0-52147-8146. (原始内容存档于2013-10-21).