有限小数 此条目需要扩充。 (2013年3月2日)请协助改善这篇条目,更进一步的信息可能会在讨论页或扩充请求中找到。请在扩充条目后将此模板移除。各种各样的数 基本 N ⊆ Z ⊆ Q ⊆ R ⊆ C {\displaystyle \mathbb {N} \subseteq \mathbb {Z} \subseteq \mathbb {Q} \subseteq \mathbb {R} \subseteq \mathbb {C} } 正数 R + {\displaystyle \mathbb {R} ^{+}} 自然数 N {\displaystyle \mathbb {N} } 正整数 Z + {\displaystyle \mathbb {Z} ^{+}} 小数有限小数无限小数循环小数有理数 Q {\displaystyle \mathbb {Q} } 代数数 A {\displaystyle \mathbb {A} } 实数 R {\displaystyle \mathbb {R} } 复数 C {\displaystyle \mathbb {C} } 高斯整数 Z [ i ] {\displaystyle \mathbb {Z} [i]} 负数 R − {\displaystyle \mathbb {R} ^{-}} 整数 Z {\displaystyle \mathbb {Z} } 负整数 Z − {\displaystyle \mathbb {Z} ^{-}} 分数单位分数二进分数规矩数无理数超越数虚数 I {\displaystyle \mathbb {I} } 二次无理数艾森斯坦整数 Z [ ω ] {\displaystyle \mathbb {Z} [\omega ]} 延伸 二元数四元数 H {\displaystyle \mathbb {H} } 八元数 O {\displaystyle \mathbb {O} } 十六元数 S {\displaystyle \mathbb {S} } 超实数 ∗ R {\displaystyle ^{*}\mathbb {R} } 大实数上超实数 双曲复数双复数复四元数共四元数(英语:Dual quaternion)超复数超数超现实数 其他 素数 P {\displaystyle \mathbb {P} } 可计算数基数阿列夫数同余整数数列公称值 规矩数可定义数序数超限数p进数数学常数 圆周率 π = 3.14159265 {\displaystyle \pi =3.14159265} …自然对数的底 e = 2.718281828 {\displaystyle e=2.718281828} …虚数单位 i = − 1 {\displaystyle i={\sqrt {-{1}}}} 无穷大 ∞ {\displaystyle \infty } 查论编 有限小数,是指小数部分的位数有限的数字,与无限小数相对。有限小数都属于有理数,可以化成分数的形式。 简单来说,有限小数是指小数部分的位数是有限的,是可以写得完的。 9.8、1.0、1.1212121212等数字都是有限小数。